Broadband Permittivity Characterization of a Substrate Material Using Deep Neural Network Trained With Full-Wave Simulations

نویسندگان

چکیده

It is crucial to know the permittivity of dielectric materials used in radio frequency (RF) components and devices because their operation loss characteristics are significantly affected by permittivity. In this study, we propose a characterization technique based on deep neural network (DNN). The latter was trained using data obtained from full-wave electromagnetic simulation software. With DNN with more than 95% testing accuracy, measured complex transmission coefficient material under test (MUT) assigned as an input model, MUT retrieved at output. proposed validated measuring FR-4 epoxy resin substrates different thicknesses. results model showed good agreement each other, error less 1.2% for relative value over broad range 1 – 10 GHz. We also compared those conventional analytical solutions highlight effectiveness method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation

The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...

متن کامل

Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding

Deep Compression is a three stage compression pipeline: pruning, quantization and Huffman coding. Pruning reduces the number of weights by 10x, quantization further improves the compression rate between 27x and 31x. Huffman coding gives more compression: between 35x and 49x. The compression rate already included the metadata for sparse representation. Deep Compression doesn’t incur loss of accu...

متن کامل

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

A neural mass model of CA1-CA3 neural network and studying sharp wave ripples

We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2022

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2022.3172300